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Summary. A general formula for the Kekul6 structure count (K) is deduced for the class of cata- 
condensed all-benzenoids with unbranched backbones. The formula is extended to "thin" pericon- 
densed all-benzenoids, where allowance is made for pyrene units. In this treatment the fragmentation 
matrices are employed. A generalization of these matrices is furnished. Next some general K formulas 
for classes of catacondensed and thin pericondensed all-coronoids are deduced. Again the fragmen- 
tation matrices are employed, but the problem is also studied in terms of certain polynomials. 
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Kekul6-Strukturziihlungen fiir einige Klassen yon all-benzenoiden und all-coronoiden Kohlenwasser- 
stoffen 

Zusammenfassung. Eine generelle Formel ftir die Kekul6-Strukturz/ihlung (K) ffir die Klasse der 
katakondensierten all-Benzenoiden mit unverzweigter Grundstruktur wird abgeleitet. Die Formel 
wird auf ,,dfinne" perikondensierte all-Benzenoide ausgeweitet, wobei Pyren-Einheiten mit ber/ick- 
sichtigt werden k6nnen. Bei dieser Behandlung werden Fragmentationsmatritzen verwendet und eine 
Generalisierung dieser Matritzen getroffen, Dann werden einige generelle K-Formeln ftir Klassen yon 
katakondensierten und dfinnen perikondensierten all-coronoiden Verbindungen abgeleitet. Dabei 
werden wieder Fragmentationsmatritzen angewandt, das Problem wird allerdings auch mit Hilfe 
bestimmter Polynome untersucht. 

Introduction 

All -benzenoid  (or fully benzeno id  [1, 2]) h y d r o c a r b o n s  are i m p o r t a n t  and inter-  
esting molecules ,  which  exhibi t  e x t r a o r d i n a r y  great  chemical  stabil i ty [1 - 3]. The i r  
def in i t ion  is based  on  the concep t  o f  a roma t i c  sextets, which has long  t radi t ions  
in organic  chemis t ry  [1, 2, 4]. Also the co r r e spond ing  benzenoid  systems (all- 
benzeno id  systems or  s imply al l -benzenoids)  have  been s tudied with great  interest  
in ma thema t i ca l  chemis t ry  [5 - 11]. A def in i t ion o f  a l l -benzenoids  in the word ing  
o f  Randi6  [12] reads: " F o r  these c o m p o u n d s  one  can write a valence s t ruc ture  in 
which a ring is e i ther  represented  as an isolated sextet  or  is devo id  o f  con juga t ion . "  

** Dedicated to the memory of Professor Oskar E. Polansky, who died in January 1989. He was 
the one who coined the term "all-benzenoid". 
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A valence structure is here synonymous with what also is called Kekul+ structure 
[13]. Kekul6 structure counts (K) for all-benzenoids in general [6] or special classes 
of all-benzenoids [ 1 3 -  19] have been studied to a large extent. Also in the present 
work the Kekul6 structure counts for classes of all-benzenoids are treated, but in 
a more general sense. Recently developed methods are employed. 

A coronoid is, loosely speaking, a benzenoid with a hole. All-coronoids [20 - 22] 
are defined in the same way as all-benzenoids. In the present work a treatise on 
the Kekul~ structure counts of a broad class of all-coronoids is included, making 
use of the matrix methods and an expansion into polynomials. 

For general references to the relevant theory the reader is referred to some 
recent monographs [13, 23, 24]. 

Class of Catacondensed All-Benzenoids 

Definitions, Notation and Some Topological Properties 

In this section the catacondensed all-benzenoids with unbranched backbones are 
treated. The backbone of a catacondensed all-benzenoid is defined as the subsystem 
obtained by deleting all Ll-mode hexagons, which necessarily are full. The full and 
empty hexagons are identified by symbols F and E, respectively. 

The backbone of a member of the defined class is a single chain of hexagons 
(unbranched catacondensed benzenoid). For h > 4 (where h is the number of 
hexagons of the all-benzenoid system) the backbone can only consist of 2-segments 
and 3-segments, but not in an arbitrary succession. A necessary and sufficient 
condition is given in the following. 

Propositions. (a) The empty and full hexagons in the backbone alternate (EFE...E); 
(b) both terminal hexagons are empty (E); (c) every 3-segment has the configuration 
empty-full-empty (EFE). 

Corollary. The backbone has an odd number of hexagons. 

In the backbone all non-terminal hexagons are angularly annelated (A2; in the 
whole all-benzenoid A3). The non-terminal (apart from L1) full hexagons (in the 
backbone) are either in A 2 or L2. An LA-sequence (written in bold) is defined by 
indicating the modes of the full hexagons in the backbone, only. Correspondingly 
we shall speak about A and L hexagons. 

Proposition. The system is determined up to isoarithmicity by its LA-sequence. 

This means that it is immaterial which way the kinks go at every angular 
annelation, for full and empty hexagons being the same. Different versions of such 
systems have the same Kekul~ structure count. In other words, the K number of 
the all-benzenoid is determined by its LA-sequence. 

A useful interpretation of a system of the considered type is a set of compressed 
triphenylenes. Triphenylene is the h = 4 branched benzenoid and the smallest (non- 
trivial) all-benzenoid (apart from benzene). By compressed it is meant that two 
neighbouring triphenylenes share one (full) hexagon. This shared hexagon is an A 
(resp. L) hexagon for the so-called angular (resp. linear) compression. 

The angular and linear compressions are illustrated in Fig. 1. In Fig. 2 a larger 
all-benzenoid of the class under consideration is depicted. Its LA-sequence is 
LALLLA. An LA-sequence can always be reversed for the same system. 
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I II 

III 

) 

Fig. 1. Two angularly (I) and two linearly (II) com- 
pressed triphenylenes. The centres of each triphenylene 
are marked by black triangles 

Fig. 2. A catacondensed all-benzenoid with an un- 
branched backbone 

Fragmentation Matrix 

Let U be a catacondensed all-benzenoid with unbranched backbone as was described 
above. The fragmentation matrix associated with U is 

u = [ U 0  U,] 
U= U3 ' (1) 

where the elements are the Kekul6 structure counts of certain fragments of U; 
K{Ui} = Ui. Let E~ and E2 be the two terminal (empty) hexagons of the backbone, 
while/71 and F2 are the two terminal (full) hexagons adjacent to E1 and E2, re- 
spectively. Then the fragments are obtained by deleting certain hexagons from 
U : U o = U - F 1 - F 2 ,  U~=U0-E2 ,  Uz---U0-E1, and U 3 = U 1 - E I = U z - E 2  . 

This definition is analogous to a matrix previously considered for unbranched 
catacondensed benzenoids [25 - 28-]. 

Kekul~ Structure Counts 

The K number of unbranched catacondensed benzenoids have been studied by 
many investigators; see the monograph on Kekul6 structures 1-13] and references 
cited therein, in addition to several more recent works [26 - 37]. In some of these 
works the fragmentation matrix [ 2 6 -  28, 34] or transfer matrix [-33] is employed. 

An application of the fragmentation matrix to the catacondensed all-benzenoids 
with unbranched backbone (U) yields for the K number U=K{U},  

U = T r ( U ) + T r ( j U ) =  U0+ Ua+ U2+ U3. (2) 

Here j is defined by 

101 
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Let the fragmentation matrix for the smallest all-benzenoid unit, viz. triphen- 
ylene, be denoted by a. It is 

For the two systems I and II (Fig.l) one has 

U I = a 2 = [  1310 1~] 

and 

(4) 

respectively. Here 

(5) 

Uii = aja = a[~ = I12 108] 
10 ' (6) 

Also for the more complex systems like III (Fig. 2) the fragmentation matrix is a 
product of ~t's and p's. The general rule is very simple: In the LA-sequence, replace 
every A by a and every L by p, and pre-multiplicate with a. In our example 

UII I = l l [ ~ 3 l l .  (8) 

According to Eq. (3) the K number in this particular example is 

Uin = Tr (apap3a) + Tr (l~2ali3a). (9) 

Extension to Thin Pericondensed All-Benzenoids 

The class of catacondensed all-benzenoids considered above is straightforwardly 
extended to "thin" pericondensed all-benzenoids by incorporating the unit IV, 
dibenzo[fg,op]naphthacence (Fig. 3). Units IV can be either angularly or linearly 
compressed with triphenylene or with each other. The members of this class are 
said to be thin (pericondensed) because they only can have isolated pairs of adjacent 
internal vertices, one pair for each pyrene fragment. 

The two Pz-mode (full) hexagons from IV are by definition deleted under the 
creation of the backbone. We still consider all-benzenoid systems where the back- 
bones are unbranched catacondensed benzenoids only. But now the backbone may 
have segments of four or more hexagons, where the characteristic configuration is 
FEEF. 

Let ~ be the fragmentation matrix for IV. It is 

IV 

Fig. 3. The dibenzo[fg, op]naphthacene unit. The centre of it is marked by a 
black rhomb 
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and we also put 

The rules for Keku16 structure counts are straightforwardly generalized to the 
thin pericondensed all-benzenoids under consideration. For the system V of Fig. 4, 
for instance, the fragmentation matrix is 

U v = rcttjrc2jct 2 = ~ttprc~ll (12) 

and the Kekul6 structure count 

Uv = Tr (naprtp~t) + Tr (p~pnpa). (13) 

A class of all-benzenoids sometimes called "pyrenes on a string" has been 
considered by several investigators [10, 12, 13, 15-  17]. Its member, P(n), may in 
the present terminology be characterized as n linearly compressed units IV. Hence 
its fragmentation matrix (Up) is 

Up = ~zp n- 1 (14) 

and the Kekul6 structure count 

K{P (n)} = Tr (rtp n- 1) .~_ Tr (pn). (15) 

An explicit formula for K{P (n)} has been reported previously [10, 13, 16, 17], but 
not the form (15). A somewhat more explicit version of (15) reads 

Generalized Fragmentation Matrix 

General Theory 

The determinant of a fragmentation matrix has proved to be of some interest. For 
an unbranched catacondensed benzenoid, a single chain of s segments, it has been 
found [-25- 27, 34] ( -  1) ~ for the pertinent determinant. Some more general con- 
siderations are given in the following. 

Let X be an arbitrary molecular graph (not necessarily benzenoid), and e and 
f its two non-incident free edges. Let A and B be two arbitrary fragments fused 

v ( 
Fig. 4. A thin pericondensed all-benzenoid 
with an unbranched backbone 
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×(A,B) 

X (A,~)) 
Fig. 5. Definition of X (A, B) and its two frag- 
ments, X (A, 0) and X (0, B) 

with X into X (A, B) as shown in Fig. 5. The graphs X (A, 0) and X (0, B) are also 
produced as shown in Fig. 5, while X (0, 0)= X. Consider the determinant 

K{X(A, B)} K{X (A,0!} (17) 
D = K{X(O,B)} K{X(O,O)} " 

Then 

D = x{ae} K{Br} = K{X} K{Xf} (18) 
X{Xe} K{Xef } " 

Here Xe and Xf denote the subgraphs obtained by deletion of e, f, respectively, 
from X, while Xef indicates the deletion of both e and f. Similarly A~ is obtained 
from A by deleting the edge e; Bf is defined analogously. 

Annelation o f  Single Linear Chains 

Important special cases emerge when A and B are single linear chains of a and b 
hexagons, respectively. Two cases are distinguished: linear and angular annelation. 
For the sake of simplicity we shall assume that both fragments A and B are either 
linearly or angularly annelated to X. 

(a) Linear Annelation. The system is depicted in Fig. 6. It corresponds to 

K{Ae} = a, K{Bf} = b. (19) 

F o r a  ¢ 0, b ~ 0: 

X { X ( a , b ) }  = (a + 1)(b -F 1)X{X} - a(b -t- 1)K{Xe} 

- b(a + 1)x{xf) + abX{Xed. (20) 

Fig. 6. Linear 
X:X(a ,  b) 

annelation of two single linear chains to 
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Further 
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Fig. 7. Angular annelation of two single linear chains X : X' (a, b) 

K { X ( a , O ) }  = (a + 1)K{X} - aK{Xe} 

K{X(0, b)} = (b + 1)K{X} - bK{X~} 

K{X(0, 0)} = K{X}. 

(a 4: 0), (21) 

(b ~ 0), (22) 

(23) 

K{X'(a,  0)} = (a + 1)K{X} - K{Xe} (a 7 ~ 0), (28) 

K{X'(0, b)} = (b + 1)K{X} - K{Xf} (b ¢ 0), (29) 

The determinant to be considered is 

D' = K{X' (a,b)} K{X'(a, 0)} (30) 
K{x'(o, b)} K{X'(0,0)} " 

By means of (23) and (27)-  (29) it is now obtained 

D ' =  K{X} K{Xf} (31) 
K{Xe} K{Xef  } ' 

in consistency with (18) and (26). It is most interesting that D' is independent of 
a and b, and depends only on X and the choice of the edges e and f. 

Take the example of X = pyrene, where the edges of annelation are chosen as 

Further 

The determinant in question is 

K{X (a, b)} K{X(a, 0)} (24) 
D =  K{X(0, b)} K{X(0,0)}" 

On expanding (24) by means of (20) - (23) it is easily verified that 

X{X} g{xf} (25) 
D = ab K{Xe} K{Xef } " 

in consistency with (18) and (19). 
(b) Angular Annelation. The system is depicted in Fig. 7. In this case it corre- 

sponds to 

K { a e }  = K{Bf} = 1. (26) 

Now for a ~ 0, b =~0: 

K{X' (a, b)} = (a + 1)(b + 1)K{X} - (a+ 1)K{Xf} 

-- (b + l )K{Xe} + K{Xef  } . (27) 
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Fig. 8. Angular annelation of two single linear chains to pyrene 

in Fig. 8. Then K{X}=6, K{Xo}=K{Xf}=I,  K{Xof}=0; hence D ' = -  1. In the 
particular example (VI) of Fig. 8 (a = 3, b = 2) one has 

D'vi = 6157 2 3 6 = - 1 .  (32) 

Formulas (25) and (31) are more or less straightforward special cases of the 
identity (18). On the other hand, the identity (18) was recently shown [-38] to be 
a special case of some substantially more general graph-theoretical results. 

Simple Fragmentation Matrices 

For the simple fragmentation matrices defined in the preceding sections, viz. ~t for 
triphenylene and ~ for dibenzo[fg, op]naphthacene (IV), one has, in consistency 
with the theory of the present section, 

d e t a =  32 ~ = 2  (33) 

and 

d e t ~ =  65 5 = - 1 .  (34) 

Classes of Catacondensed and Thin Perieondensed All-Coronoids 

Definitions and Some Topological Properties 

A primitive coronoid is synonymous with an unbranched catacondensed coronoid. 
Catacondensed all-coronoids can be constructed so that their backbones are prim- 
itive coronoids. The systems are very similar to the catacondensed all-benzenoids 
with unbranched backbones. Thus: (a) the backbones consist of 2-segments and 
3-segments only; (b) the backbone has alternating E and Fhexagons, but now there 
is no terminal hexagon in the backbone; (c) its 3-segments have the EFE config- 
uration; (d) an LA-sequence determines the number of normal Kekul6 structures, 
a concept to be defined in the next paragraph. Now any cyclic permutation of the 
LA-sequence can be taken, in addition to its reverse. 

The class is again extended straightforwardly to the so-called thin pericondensed 
all-coronoids by allowing for the dibenzo[fg,op]naphthacene (IV; see Fig. 3) unit. 

A member of the all-coronoid class under consideration is depicted in Fig. 9. 
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Vll 

4 

Fig. 9. A thin pericondensed all-coronoid, where the 
backbone is a primitive coronoid 

Number of Normal Kekul~ Structures 

Polansky and Gutman I-6] distinguished between normal and anomalous Kekul6 
structures of  an all-benzenoid. The same viewpoint is presently adapted to all- 
coronoids. Let the three edges of an empty hexagon (E) which are not shared with 
full hexagons be referred to as the ~-bonds. In any E of a normal Kekul6 structure 
the ~-bonds are either all double or they are all single. The corresponding hexagons 
are referred to as starred and unstarred, respectively. Also in all-coronoids we define 
a normal Kekul6 structure as being characterized by possessing only starred and 
unstarred E hexagons, while no other bonding schemes are present. 

The number of normal Kekul6 structures of an all-coronoid of  the considered 
class is obtained as the trace of a matrix product, which is created by the following 
rules: 

(i) Start at an arbitrary place and go around the corona hole in an arbitrary 
direction. 

(ii) For  every triphenylene centre (marked by black triangle), set a. 
(iii) For every pyrene centre (marked by black rhomb), set n. 
(iv) For every L, set j. 

In the example of Fig. 9 we have, for instance, 

Knorm;  v i i  = Tr ( ~ j r t a z j a z / t a j l l )  = Tr (jrt~tzja2najalt) = 8565184. (35) 

Number of Anomalous Kekulk Structures 

The anomalous Kekul6 structures of an alt-coronoid have empty hexagons with 
other bonding schemes than the starred and unstarred types. For an all-coronoid 
of the type considered here the anomalous Kekul6 structures are determined 
uniquely by the following rules: 

(i) Select an arbitrary A or L hexagon. 
(ii) Select in this hexagon two parallel edges, one on the outer and one on the 

inner perimeter, and assign to them either (a) single/single or (b) double/ 
double bonds. 

(iii) Continue to assign single and double bonds as far as they are determined. 
(iv) Observe the hexagons in which the bonding is not determined, and let their 

number be "c. 
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(v) The number of anomalous Kekul6 structures, Ka,om, is given by 

Kanom = 2 ~ + 2 v-~, (36) 

where T is the number of triphenylene centres in the whole system. 

The effect of the above prescription is that all bonds in the backbone become 
determined and also in the Pz-mode (full) hexagons, while the Ll-mode (full) 
hexagons may have either determined or undetermined bonds. The two alternatives 
(a) and (b) under point (ii) are complementary in the sense that the bonds in an 
L~-mode hexagon become determined by (b) if they are undetermined by (a) and 
vice versa. Therefore it is sufficient to go through the process only for one of the 
alternatives (a) and (b). In order to make the number -c unique we adopt the 
convention z ~< T -  z. 

The described procedure is illustrated for VII in Fig. 10. In this case z = 3, T =  6, 
and therefore 

Kanom;WI = 2 × 23 = 16. (37) 

Pyrenes on a Ring 

Definition and Notation 

The class "pyrenes on a ring" is a subclass of the thin pericondensed all-coronoids 
considered here. It is similar to the pyrenes on a string (see above) inasmuch as 
the members consist of the units IV, but now they are angularly compressed rather 
than linearly. A member of the class with n pyrene units is designated by the symbol 

I 

,( 

Fig. 10. The anomalous Kekul6 structures in the system 
of Fig. 9 (VII). Inscribed circles into hexagons repre- 
sent aromatic sextets 
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Fig. 11. The smallest member of pyrenes on a ring, p0 (6) 
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p0 (n). Fig. 11 shows the example for n = 6. For the Kekul6 structure count we use 
the notation 

K{ P° (//)} = P0orm (g/) ~- P~anom (gt). (38) 

The anomalous Kekul6 structures (last term) are found as in the above algorithm, 
starting with an A hexagon, which links two pyrene units together. 

For the number of normal Kekul6 structures, P°~orm (n), the method of frag- 
mentation gives 

P°~orm (n) = K{Q2 (n)} + K{Q" (n)}, (39) 

wherein the classes on the right-hand side, viz. Q2 (n) and Q" (n) are treated elsewhere 
in detail [13]. One finds by certain substitutions 

p0norm (g/) ~-- V2 [K{Q (iv/)} -t- K{Q (iv/- 2)}], (40) 

where another class, Q (n), is introduced; it was referred to as angularly annelated 
pyrenes. The following explicit formula for the Kekul~ structure count of Q (n) 
was deduced [13], 

K{Q(n)} = (1/42-6) [(5 + 42-6)n-1- I - (5 - . ~ ) n +  1].  (41) 

By means of this expression and Eq. (40) it was attained at the remarkably simple 
result 

P°norm (n) = (5 + 4 ~ )  n -1- (5 - ~ / ~ ) n  . (42) 

Having the characteristic equation in mind, a recurrence relation for the number 
of normal Kekulb structures is readily obtained from Eq. (42), 

P~orm (n + 2) = 10P°orm(n -~- 1) + P0norm(/'/) . (43) 

The formula (42) gives positive integer values of p0~orm (n) for all integer n>~ 0. 
For n~> 1 all the systems can be realized either as coronoids or "non-coronoids", 
the latter still consisting of hexagons, but some of them inevitably deformed when 
drawn in a plane. Such cases have been studied in detail in connection with primitive 
coronoids [21], and could appropriately be termed "primitive non-coronoids". For 
the sake of illustration two versions of the p0 (1) graph are depicted in Fig. 12. Also 
for the non-coronoids of this kind the Kekul6 structures are well defined, and 
Eq. (42) reproduces their numbers. 
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~a  

Fig. 12. The pO (1) graph 

The number of anomalous Keku16 structures is 2 for every p0 (n) which is a 
coronoid (n = 6, 10, 12, 14, ...). For the p0 (n) non-coronoids it must be observed 
that the anomalous Kekul6 structures disappear whenever n is odd because of the 
presence of odd-membered perimeters in those cases. Therefore 

P~nom (n) = 1 + (-- 1)". (44) 

Table 1 shows the numerical values consistent with Eqs. (42) and (44) for 0 ~< 
n ~ < 1 0 .  

It is interesting that the numbers (42) are values of graph polynominal associated 
with the cycle C~. More precisely, 

when 

0 Pnorm (n) = ~t (C. I 10), (45) 

(C, In) = i - " a  (C, ]ix) (46) 

and a (C, Ix) is used to denote the matching polynomial of the cycle [-39-42]. 
One has explicitly 

(C~ Ix) = 2 + 2 

Table 1. Numerical values for P0norm(n ) and P~anom(n), which include the Kekul6 structure counts for 

pyrenes on a ring when n = 6 and 10 

n ~orm (n) 0 P . . . .  (n) 

0 2 2 

1 10 0 
2 102 2 

3 1030 0 
4 10402 2 

5 105050 0 
6 1060902 2 
7 10714070 0 

8 108201602 2 

9 1092730090 0 
10 11035502502 2 
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and 

~t (C, Ix) = 2 + 2 ' (48) 

where the latter equation (48) immediately gives (42) on inserting x =  10. 
This brings us naturally to the next section, where the polynomial formulas for 

Kekul6 structure counts of  thin pericondensed all-coronoids of  the considered type 
are treated in general. 

Polynomial Formulas for Catacondensed and Thin Perieondensed All-Coronoids with 
Repeated Units 

After the first studies of  some classes of  primitive coronoids with repeated units 
[21, 22, 4 3 - 4 5 ]  some further systematic investigations resulted in interesting 
polynomial formulas for their Kekul~ structure counts [ 2 5 - 2 8 ,  46, 47]. 

In the present work the same approach is applied to the catacondensed and 
thin pericondensed all-coronoids. 

Let u denote a unit, which is a catacondensed or thin pericondensed benzenoid 
according to the definitions above. Let n isomorphic or isoarithmic units u be either 
angularly or linearly compressed into a coronoid and call it C (n~. In the following 
we shall treat the number  of  normal  Kekul6 structures, say C~o~rm, for such a system, 
which is said to have n repeated units. 

Associated Benzenoid 

Let an all-coronoid of  the considered type be split at an A or an L hexagon. Hereby 
an all-benzenoid is created so that the A or L hexagon is used twice for the purpose 
of  constituting two terminal full hexagons, one at each end of  the all-benzenoid 
system. This is an all-benzenoid associated with the original all-coronoid. Let this 
be denoted by U A or U L, depending on weather the splitting was executed at an 
A or an L hexagon, respectively. Let also the corresponding fragmentat ion matrices 
be denoted by U A and U L, respectively. Then for the number  of normal Kekul6 
structures of  the all-coronoid system one has 

Cnorm = Tr (U A) = Tr (jUL). (49) 

The Case of One Unit 

The above analysis reflects a t reatment of  C (n~ with n = 1. In this case it is of  course 
inadequate to speak about  one "repeated" unit. If  the unit is u A or u L it can 
immediately be identified with U A or U r of  the preceding paragraph, and we may 
write 

where 

C(1)norm = x ,  (50)  

x = Xr (u A) = + u(  (51) 
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in the case of  a splitting at an A hexagon, or 

x = Tr (ju L) = uf + u} 

for the splitting at L. 
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(52) 

A n g u l a r  C o m p r e s s i o n  o f  n U n i t s  

For C (n) with n angularly compressed (repeated) units one has 

C(nn2rm = Tr [(uA)n]  , 

Consider first the case of  n = 2. It is easily obtained that 

C(g2rm -= (U~)  2 + 2U~/b/~ -}- (uA)  2 ' 

and by substituting u l A u 2  a with the aid of  the determinant D of  u A, 

C(g2rm ~-- (uA)  2 q- 2ugua3 + (uA)  2 - -  2D. 

Consequently, 

(53) 

(54) 

(55) 

C}22rm =- X 2 - -  2D, (56) 

where x is given by Eq. (51). 
Table 2 gives the polynomials for C(~rm up to n--6.  It can be shown that these 

polynomials for D = 1 coincide with a (C, Ix), the matching polynomial for the 
cycle C,; cf. Eq. (47). 

The value of  D is easily determined with the knowledge of  the determinants 
for a and r~; see Eqs. (33) and (34), respectively. In addition, we observe that 

detj  = - 1, det 1~ = - 2, det p = 1. (57) 

Therefore 

D = ( -  ly+P2 '. (58) 

Here, with reference to one unit u a, j is the number  of  L hexagons, p is the number  
of  pyrenes, and t the number of  triphenylene centres. 

Table 2. Polynomials for numbers of normal Kekul6 structures of C (') 

n Angular compression Linear compression 

C~22rm; X = ug + u¢ C~:2rm; X = Uf + U~ 

] x x 

2 x a -  2D X 2 + 2D 

3 x 3 - 3Dx x 3 + 3Dx 
4 x 4 -  4Dx  2 + 2D 2 x 4 + 4Dx  e + 2D 2 

5 X 5 -- 5 D x  3 + 5D2x x 5 -k 5 O x  3 q- 5D2x 

6 x 6 - 6 D x  4 + 9D2x 2 -  2D 3 x 6 + 6 Dx4 + 9 Dzxz  + 2D3 



Kekul6 Structure Counts 785 

Linear Compression of n Units 

Assume now that  C (') has n linearly compressed (repeated) units. Then 

C~o~rm = Tr [(juL)']. (59) 

Consider  again the case of  n = 2. In this case one obtains 

C(2  (u )2 + L L 
n o r m  ~--- 2U0U3 + (U~) 2 (60) 

and with the aid of  the determinant  D of  u L, 

C(22rm = (Ulr) 2 + 2uZ(u~ + (b/2L) 2 + 2D.  (61) 

Consequently,  

C~2rm = x 2 + 2D,  (62) 

where x now is given by Eq. (52). 
Table 2 includes the polynomials  also of  this kind up to n = 6. For  D = 1 they 

coincide with gt (C. Ix), the class of  polynomials  related to the matching polynomials  
for the cycle C,; cf. Eq. (48). 

The value of  D may  also in this case be determined by Eq. (58), where p and 
t are the numbers  of  pyrenes and triphenylene centres, respectively, in the unit  u L. 
This unit, in the all-coronoid, spans f rom one L hexagon to another  L. In the 
number  j of  Eq. (58) either both  of  these L hexagons should be counted or both  
should be omitted.  

Some Examples 

Example 1. Interpret  the system of  Fig. 11 as six angularly compressed units, for 
which uA=rc. Hence x = T r ( n )  = 10; cf. Eq. (10). Fur thermore ,  D = - 1  in consis- 
tency with both  Eq. (34) and Eq. (58), where j =  0, p = 1, and t = 0 is to be inserted. 
Now the last polynomial  in the first co lumn of  Table 2 reproduces 0 Pnorm (6) of  
Table 1. 

Example 2. Consider  the system of  Fig. 13, which consists of three angularly com- 
pressed units, where 

27 (63) 
u = ~ t j r ~ = a p =  22 18 " 

Hence x = 45 and D = 2, which should be inserted into the third polynomial  in the 
first co lumn of  Table 2. It yields Cnorm = 90 855. Together  with Carom = 1 + 23 = 9 
one arrives at the total number  of  90 864 Kekul6 structures. 

Example 3. In the system of  Fig. 14 one has six linearly compressed units, for which 
the f ragmenta t ion matrix is the same as in the above example; see Eq. (63). But 
now x = 44, while D = 2 as above. This determinant  value is consistent with Eq. 
(58), where j =  1 or 3, p =  1, and t =  1. The values o f x  and D are now inserted into 
the last polynomial  of  the second co lumn of  Table 2 and yield Cnorm = 7 301 360 720, 
which together  with Canom = 2 X 23 = 16 gives a total of  7 301 360 736 Kekul6 struc- 
tures. 
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Fig. 13. A thin pericondensed all-coronoid with three repeated units. 
The shaded A hexagons are shared by neighbouring units 

Fig. 14. A thin pericondensed all-coronoid 
with six repeated units. The shaded L hex- 
agons are shared by neighbouring units 
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